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ABSTRACT Decentralized publish-subscribe has become a popular communication pattern in Internet of
Things (IoT) and blockchain networks. However, many decentralized publish-subscribe proposals suffer
from long and unpredictable message propagation delays and vulnerability to various attacks. In this
paper we present and evaluate the Streamr Network, a decentralized publish-subscribe system already in
production, that solves the aforementioned problems by enforcing the intended network topology with the
help of trackers in order to keep the latencies low and predictable. Our experiments, conducted with up
to 2048 nodes placed in Amazon datacenters around the world, show that the message propagation delays
in the Streamr network scale logarithmically as a function of the number of nodes, and that they can be
estimated using Dijkstra’s algorithm with a mean absolute percentage error (MAPE) of 3.5%.

INDEX TERMS distributed, decentralized, scalable, publish-subscribe, publish, subscribe, Internet of
Things, IoT, peer-to-peer, P2P, smart contract

I. INTRODUCTION
The publish-subscribe model has emerged as a popular com-
munication pattern in Internet of Things (IoT) networks.
The decoupling of data producers and consumers offered
by the publish-subscribe pattern is well-suited to the IoT
domain, where both the number of data-producing sensors
as well as the number of data consumers are potentially
large and constantly changing [1] [2]. The traditional way of
realizing the publish-subscribe communication pattern in IoT
is via centralized brokers deployed in the cloud. Well-known
technologies used for implementing this approach include
MQTT, AMQP, XMPP and ZeroMQ [2].

The centralized solutions have at least two shortcomings.
Firstly, they are not scalable in the case of high-volume event
streams; the uplink bandwidth cost of a centralized broker
grows linearly with the number of subscribers. Secondly, a
centralized broker can become a single point of failure, with
both technical and business risks present. Technical failures
include downtime due to faulty operations or being targeted
in a cyber attack, while business risks include vendor lock-in,
pricing fluctuations, censorship, data abuse, and even the risk
of the service getting shut down altogether.

The limitations of centralized publish-subscribe solutions
were recognized early on, and a number of decentralized

designs [3] [4] [5] [6] [7] [8] [9] [10] [11] [12] [13] [14] [15]
[16] were proposed in the early 2000s’ peer-to-peer (P2P)
networks research community. During the past five years,
decentralized publish-subscribe networks have experienced
a renaissance and have been implemented for practical use in
IoT and blockchain domains [17] [18] [19].

The decentralized publish-subscribe solutions can, in most
cases, offer a constant uplink bandwidth cost for the de-
centralized message brokers, regardless of the number of
subscribers. However, several challenges remain. Firstly, the
event delivery latency of a decentralized model is inherently
longer than it is in a centralized model, because the events
are delivered over a multi-hop application layer multicast.
More importantly, the event delivery latency is unpredictable
in most cases because of the unpredictable and ever-evolving
nature of the peer-to-peer topology. This can make peer-to-
peer publish-subscribe networks ill-suited for applications
such as warning systems, where predictable latency is im-
portant. Secondly, the existing proposals are often vulnerable
to various attacks as shown in [20].

In this paper, we present the Streamr Network, a decen-
tralized publish-subscribe network that solves the above-
mentioned challenges. In the Streamr Network, each publish-
subscribe topic, referred to as a stream, forms its separate
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P2P overlay topology. Each per-stream topology consists of
the nodes tasked with publishing or subscribing messages in
the stream. All the nodes participating in a stream contribute
upload bandwidth to the stream by forwarding the messages
they receive to a fixed number of neighboring nodes in the
same topology. As each new subscriber contributes network
bandwidth to the system, the topologies can scale without
limit. The per-stream P2P topologies are built and maintained
by a set of BitTorrent-like trackers [21]. The owners of
each stream decide which trackers are to be used for the
stream and save the addresses of the trackers in an Ethereum
smart contract [22]. The network offers a constant uplink
bandwidth cost for publishers and low event delivery latency.
The event delivery latency can be predicted by applying
Dijkstra’s algorithm [23] to a weighted graph that describes
the network topology. Moreover, the Streamr Network avoids
central points of failure in terms of both technology and
management. Compared with previous decentralized solu-
tions based on peer sampling, the Streamr Network is less
vulnerable to attacks due to the combined use of blockchain
technology and trackers that enforce the intended topologies
in the P2P network.

Our real-life experiments, conducted with up to 2048
nodes placed in Amazon data centers around the world, show
that, when using a random regular graph as the network
topology, the message propagation delays in the Streamr
Network scale logarithmically as the number of subscribers
in the stream increases, and even in the case of the 2048 nodes
network, 99% of messages were delivered globally within
362 ms. The uplink bandwidth cost for the publisher stays
constant, and the mean relative delay penalty increases loga-
rithmically, staying under 3.2 in all the experiment runs. Pre-
dicting the message propagation delay by applying Dijkstra’s
algorithm on the network graph, weighted with latencies to
each node’s neighbors, yields estimates that are within 3.5%
accuracy when compared to the measured message delivery
latencies.

The remainder of the paper is organized as follows: in
Section II, we present background information on previously
proposed distributed publish-subscribe systems, and review
their design choices. The requirements for the Streamr net-
work are reviewed in Section III. The design of the Streamr
Network is presented in Section IV, and its performance is
evaluated in Section V. Finally, the paper is concluded in
Section VI.

II. BACKGROUND AND RELATED WORK
The publish-subscribe interaction scheme [1] is a popular
means of implementing an asynchronous flow of events
between the publishers of events and the subscribers who
have registered their interest in receiving those events in an
event service. Publish-subscribe systems can be roughly di-
vided into three main categories: content-based, topic-based,
and type-based systems [1], out of which content-based and
topic-based systems are the most common. In content-based
systems, subscribers express their interest in events based on

the event contents, for example, by specifying event attribute
values that the event contents need to match. In topic-based
systems, on the other hand, each event is published under a
topic, and the subscribers express their interest in receiving
certain events by subscribing to topics. In some topic-based
systems, topics are hierarchical URL-like strings that allow
the use of wildcards when making subscriptions, whereas
in others, topics are flat labels with no semantics. In the
remaining part of this section we concentrate our analysis
on this specific class of publish-subscribe systems that treat
topic names as flat labels from the system perspective. 1

A. TRAFFIC CONFINEMENT

In the most naive strawman-implementation of a decentral-
ized publish-subscribe system presented in [5], the peers
would form a global unstructured peer-to-peer mesh, and
flood all events to all peers in the network. Out of these
events, each peer would then pick the ones it is interested
in for further processing. This arrangement would, naturally,
lead to a massive waste of bandwidth and high event delivery
latencies, as peers would be handling and forwarding events
they have no interest in. Thus according to Baldoni et al. [5]
it would be beneficial to aim for traffic confinement where
the events are only delivered to those peers that are interested
in them. In [11] the term noisiness/noiselessness is used for
describing how well a distributed publish-subscribe system
succeeds in traffic confinement, and a peer that receives
messages it is not interested in is said to suffer from noise.
Further, in some publications, such as [14] topic-connectivity
is used as a synonym for traffic confinement. In this article,
we use all these three terms interchangeably.

According to [5] traffic confinement should be imple-
mented in peer-to-peer publish-subscribe systems in three
steps: Interest Clustering, Inner-Cluster Dissemination and
Outer-Cluster Routing. We note that these steps can be also
seen as generic strategies that are implemented in some way
or another in all topic-based distributed peer-to-peer publish-
subscribe systems, regardless of whether traffic confinement
is is their explicit goal or not.

1) Interest Clustering Strategy defines the means of bring-
ing together, organizing, and maintaining the group of
subscribers interested in a certain topic.

2) Inner-Cluster Dissemination Strategy defines the
means of distributing events within the group of sub-
scribers of a certain topic.

3) Outer-Cluster Routing Strategy defines the means of
finding the group of subscribers of a certain topic.

In case of the previously-described naive implementation,
all the three strategies are implemented by the same simple
unstructured overlay network. There is no Interest Clustering,
flooding to everybody is used for event dissemination, and

1The fact that these systems treat topic names as flat labels from the
system perspective does not rule out providing an API layer with hierarchical
topic names built on top.
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finding any node in the network will suffice for the Outer-
Cluster Routing Strategy.

B. DISTRIBUTED TOPIC-BASED PUBLISH-SUBSCRIBE
SYSTEMS IN ACADEMIC LITERATURE
Academic proposals for distributed publish-subscribe sys-
tems can be roughly divided in two main categories: those
based on structured overlay networks (DHTs) and those
based on unstructured ones. The former group of proposals
includes Bayeux [16], Scribe [6], CAN [13] and Vitis [12],
whereas the latter group includes Tera [5], Spidercast [7],
PolderCast [14], and Rappel [11].

Early distributed publish-subscribe systems Bayeux [16]
and Scribe [6] are both built on top of structured peer-to-peer
networks; Bayeux uses the Tapestry DHT whereas Scribe
is based on the Pastry DHT network. In both systems, the
underlying DHT is used as-is for Outer-Cluster Routing to
locate a root node of each topic. As the Interest Clustering
Strategy, a per-topic multicast tree starting at the root node
is maintained on top of the global DHT topology. Standard
DHT routing based on node IDs is used for Inner-Cluster
Dissemination, which means that the events need to pass
through uninterested intermediate nodes in order to reach
their subscribers. Using the terminology of [11], both Bayeux
and Scribe are noisy, and only partially implement traffic
confinement because of the presence of uninterested interme-
diate nodes, and even the possibility of an uninterested node
becoming a topic root in Scribe.

Application-level Multicast using Content-Addressable
Networks (CAN) [13] is a DHT-based system that uses a
single global CAN DHT for Outer-Cluster Routing to locate
bootstrap nodes for multicast groups, but each multicast
group is maintained in its own separate CAN network. Inner-
cluster Dissemination within each multicast group can be
implemented either by simple flooding, or by using more
elaborate methods that can help to avoid duplicate messages.
CAN implements traffic confinement well, except for the fact
that nodes in the global CAN DHT network are highly likely
to become bootstrap nodes for multicast groups that they do
not themselves participate in.

One problem that affects all of the previously presented
DHT based systems is the creation of hotspots, where nodes
may end up routing large amounts of control data they have
no interest in. There are also two other problems with the
other DHT-based solutions, except CAN: noisiness, which
means the nodes need to route events they are not interested
in, and the high relative delay penalty caused by relay-based
routing. There are also various DHT-specific attacks [24] that
these DHT-based solutions may be susceptible to, if suitable
countermeasures are not properly implemented.

Tera, introduced by Baldoni et al. [5], is based on a
global unstructured overlay that is used for Outer-Cluster
Routing and separate per-topic unstructured overlays for
Interest Clustering and Inner-Cluster Dissemination. Outer-
Cluster Routing is enabled by advertising the subscriptions
of each node to a random subset of nodes in the global over-

lay, who in turn maintain tables of topic-to-node mappings.
Traffic confinement is fully implemented as events are only
propagated to the members of corresponding topic-overlays,
and there are no root or bootstrap nodes that might act as
single points of failure. A potential major problem in the
Tera design is the potentially high node degree caused by
its reliance on per-topic overlays, in which nodes with large
number of subscriptions end up maintaining a large number
of connections to other nodes.

Spidercast, presented by Chockler et al. [7], concentrates
on Interest Clustering and tries to lower the node degree by
tracking the interests of nodes. It uses a single, global, un-
structured overlay, in which the neighbor selection is biased,
based on the interests of the nodes. Spidercast presumes the
existence of a probabilistic distributed membership service
similar to [25] or [1], with the help of which each node can
construct (at least a partial) interest view of other nodes in
the network. Each node then chooses neighbors to connect
to from this interest view, aiming to keep each topic k-
connected (i.e. for each topic, the node is interested in, it
maintains connections to k other peers interested in the same
topic) while at the same time minimizing the total number of
connections to other peers. Through simulation, Spidercast is
shown to be noiseless.

Vitis [12] takes a radical approach to the potentially high
node degree problem by setting a constant maximum node
degree to all the nodes. The result is a Scribe-like overlay
where a DHT routing-based relay is used for distributing
events to clusters of nodes instead of individual nodes, and
the events are flooded within the cluster members using direct
relay-free connections. The Vitis system thus has a much
smaller noise level much smaller compared to Scribe, but
does not eliminate it completely, in order to keep the node
degree low.

PolderCast [14] aims at full topic-connectivity (zero noise)
while keeping the node degrees at similar level with Spider-
cast. PolderCast utilizes a distributed peer-sampling service
called Cyclon [26] in its Interest Clustering Strategy to get
random samples of the whole topology, and a gossip protocol
called Vicinity to construct an unstructured overlay network
that chooses the neighbors of each node, based on the number
of topics any two nodes have in common. A third gossiping
protocol called Rings further uses the node samples provided
by the Vicinity protocol to generate ring topologies; one
ring for each topic. The Inner-Cluster Dissemination Strategy
of PolderCast is to push the message both forwards and
backwards along the topic ring, and also along the random
links within the ring. This strategy results a low number of
duplicate messages, and a high dissemination speed mea-
sured as number of hops, because of the random links. How-
ever, this does not necessarily imply a high dissemination
speed measured in milliseconds, because the ring topologies
are constructed according to logical node IDs, and network
latencies are not taken into account.

Rappel [11] defines itself as a feed-based publish-
subscribe system in which each feed has exactly one pub-
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lisher, and a variable number of subscribers. Rappel is similar
to PolderCast in the way that it chooses the neighbors in the
overlay based on the number of topics a pair of two nodes
have in common. However, instead of placing the subscribers
of each topic in separate ring topologies like Sub-2-Sub and
PolderCast, Rappel builds locality-aware per-topic dissemi-
nation trees that aim to minimize event dissemination latency
with the help of Vivaldi network coordinates [27]. Rappel
achieves full topic-connectivity (zero noise), but according to
their own measurements in [11], performs worse than Scribe
in terms of event dissemination latency, despite the highly
refined locality-aware tree construction algorithm used.

C. SECURITY ISSUES
The previously discussed publish-subscribe systems based
on unstructured peer-to-peer networks are all susceptible to
the serious threat of eclipse and hub attacks on their peer-
sampling-based overlay construction mechanisms [20]. In
gossip-based peer-sampling, nodes keep a partial view of
the whole network, and periodically exchange parts of their
partial views with other nodes. Attacks are possible because
the nodes can freely choose the nodes they advertise to the
others, and thus byzantine nodes can choose to only advertise
their byzantine friends also taking part in the attack.

In an eclipse attack, the partial view of a target node is
filled with the addresses of byzantine nodes, separating the
target node from the rest of the network. The hub attack is
a larger-scale version of the eclipse attack where the partial
views of most of the nodes get filled with the addresses of the
byzantine nodes who become hubs in the network. If all the
hubs, for example, suddenly go offline, they can cause their
target nodes to get disconnected from the rest of the network.
In [20] it is shown that, utilizing the hub attack, as little as 20
byzantine nodes are enough to bring down a peer-sampling-
based network of 1000 nodes in a very short period of time.

There have been numerous attempts at solving the security
problems of gossip-based peer sampling, but to the best of
our knowledge, all the proposed solutions have serious short-
comings. Some proposed solutions [28] [20] [29] require the
use of a certificate authority or some other trusted centralized
component, which goes against the idea of peer sampling
being a decentralized way of constructing overlay networks.
Brahms [30], on the other hand, limits the number of view
push operations a client can perform in a certain period of
time, using a proof-of-work mechanism. In practical imple-
mentations, this would lead to high CPU loads on the network
nodes, as the nodes need to run the peer sampling algorithm
regularly in order to deal with network churn. GossipSub
[19], the protocol planned to be used in the Ethereum 2.0
network, tries to solve the security problems by applying a
number of case-by-case mitigation strategies to each attack
type. As GossipSub was released very recently, it remains
to be seen if its mitigation strategies are extensive enough to
make the system secure in practice. The most radical solution
to the byzantine nodes problem proposed in Fireflies [31]
is moving from partial views to full views of the network.

However, according to Johansen et al. [31], the network load
caused by keeping the full network view grows linearly with
the number of nodes in the networks, and thus the method is
only suitable for networks of moderate size.

D. REAL-LIFE NETWORKS THAT RESEMBLE
DISTRIBUTED TOPIC-BASED PUBLISH-SUBSCRIBE
SYSTEMS
Despite the popularity of the topic in scientific literature,
there are only few examples of distributed topic-based
publish-subscribe systems that have been deployed in prac-
tise. Thus, in this section we will present examples of real-life
distributed systems that do not necessarily fit into the exact
definition of a topic-based publish-subscribe system, but are
similar enough that their designs can be compared to those
of the academic systems presented in the previous section.
The goal of this comparison is to analyze how the real-life
systems differ from their academic counterparts, and discover
the reasons for the differences.

1) Matrix
Matrix [17] is a rare example of a widely-deployed general-
purpose distributed publish-subscribe system. Matrix is a
classical topic-based publish-subscribe system that aims to
deliver events published on a topic, or "room" in Matrix
terminology, to subscribers who have registered their interest
in the specific topic.

The Matrix network consists of clients who connect to
Homeservers that are networked together to build a server-to-
server network. The events published in a room are replicated
to all Homeservers that have clients that have subscribed to
the room in question. The identifiers of the rooms are scoped
by DNS domains. Homeservers act as directory servers for
their respective DNS domains, and play a role similar to a
tracker in BitTorrent.

If Matrix is to be analyzed using the framework de-
fined in the previous section, its Interest Clustering Strategy
is to place all the Homeservers participating in a room
in per-topic fully-connected mesh with the help of a per-
domain tracker. Event flooding in the fully-connected per-
topic meshes serves as the Inner-Cluster Dissemination Strat-
egy, and Outer-Cluster Routing is conducted by locating the
domain’s tracker using DNS.

2) BitTorrent
Even though BitTorrent [21] is not a publish-subscribe
system as such, it shares many similarities with publish-
subscribe systems. In BitTorrent, users publish torrents, col-
lections of files, that other users can download by joining the
overlay of the torrent and downloading pieces of the torrent
from other users. In publish-subscribe terms, the ID of the
torrent can be seen as a topic, and the pieces of data that the
peer share to each other can be seen as the events.

If viewed as a publish-subscribe system, the Interest Clus-
tering Strategy of BitTorrent is building per-topic overlays

4 VOLUME xx, 2020



Savolainen et al.: The Streamr Network: Performance and Scalability

with the help of a tracker. The per-topic overlays in BitTor-
rent resemble random graphs with high node-degrees. The
Inner-Cluster Dissemination Strategy of BitTorrent is based
on "lazy push"; the clients participating in a torrent inform all
their single-hop neighbors with HAVE messages about the
pieces of the torrent data they already have and, based on
the view the nodes construct about piece availability in their
neighborhood, they request the pieces from their neighbors
according to a piece selection strategy. The design of this
Inner-Cluster-Routing Strategy assumes that the size of the
HAVE messages is insignificant compared to the size of the
data pieces - otherwise the transmission load of the HAVE
messages would become prohibitive in a high-degree mesh.
The Outer-Cluster Routing Strategy in BitTorrent varies by
version. In the traditional BitTorrent [21], the addresses of
the trackers responsible for a torrent are hard-coded into
the descriptor file, the so-called ".torrent" file of the torrent.
These .torrent-files can in turn be found by interested users on
websites called BitTorrent indices. In so-called "trackerless"
BitTorrent [32] the clients acting as trackers for a torrent
are found using a Kademlia DHT. This implies that clients
having nothing to do with a torrent in question may end up
acting as trackers for the torrent as this is decided by the
proximity of the client IDs to the ID of the torrent in the
Kademlia identifier space.

3) Blockchain and other Decentralized Consensus Networks
Beside IoT networks, blockchains and other decentralized
consensus networks have emerged as a prominent use case
for the decentralized publish-subscribe pattern. In the origi-
nal Bitcoin and Ethereum networks, all full nodes subscribed
to a handful of preset topics ("block", "transaction"), whereas
the upcoming Ethereum 2.0 network will have hundreds of
topics and each node will only subscribe to a subset of them
[19].

The Bitcoin network is an unstructured peer-to-peer net-
work of a potentially high node-degree where each public
Bitcoin node may establish up to 8 outgoing connections and
accept 117 incoming connections [33]. Bitcoin nodes get to
know other nodes by fetching lists of node addresses from
so-called "DNS seeders" that periodically crawl the network,
and through a peer exchange mechanism where peers send
lists of other nodes they know to each other in ADDR mes-
sages. Nodes store the encountered node addresses on disk,
and choose the peers to connect with, according to various
criteria reviewed in detail in [33]. The Bitcoin nodes protect
themselves against eclipse attacks by grouping known peer
addresses into buckets of limited size based on IP prefixes,
and by allowing each IP address to be stored only once.
Therefore, to successfully eclipse a Bitcoin node, around
8000 IP addresses from various subnets would be needed
[33].

The message propagation for the large ( 500KB) block
messages in the Bitcoin network happens utilizing "lazy pull"
in a way similar to BitTorrent where the nodes first advertise
to their neighbors the availability of blocks using small INV

messages, and the neighbors can then request to download
the blocks they do not yet have. Significant difference to the
HAVE messages of BitTorrent is that the INV messages are
only instantly flooded to 25% of the neighbors, and trickled
to the remaining 75% of the neighbors at 100ms intervals
[34]. Message propagation delays in the Bitcoin network are
lengthy and highly variable; in measurements of [35] the
median time for a Bitcoin node to receive a newly-created
block was 6.5 seconds, mean time was 12.6 seconds, and
even after 40 seconds 5% of the nodes still had not received
the block.

Ethereum is a blockchain that specializes in programmable
on-chain applications called smart contracts [22]. Go
Ethereum (Geth), the official reference implementation of
Ethereum network, has a default node degree of 25, with
8 outgoing and 17 incoming connections [36]. In Geth, a
Kademlia-like DHT is used for peer discovery only. There are
no restrictions on which incoming connections are accepted,
and the selection of the 8 outgoing connections among the
discovered peers also follows a random-like criteria instead
of the Kademlia one. Limitations for connections to nodes in
a single IP subnet are more relaxed than in Bitcoin, and thus it
was shown [36] that two public IP addresses from distinct /24
IP subnets were sufficient for mounting a successful eclipse
attack against an Ethereum node. Blocks are propagated in
the Ethereum network in two phases, utilizing a gossip-like
protocol where the sending node, after initial verification,
first pushes the new block to randomly-chosen

p
d out of

its total of d neighbors, and after processing the block com-
pletely it advertises the availability of the new block to the
remaining d �

p
d neighbors. Now the neighbors, who have

not yet received the block in question, can request the block
in pull-based manner [37]. In a recent measurement study
[38], block propagation delays in the Ethereum network were
found to be low, with 99% of the blocks being propagated in
under 317ms between the measurement nodes of the authors
placed in 4 locations around the world.

III. REQUIREMENTS
In this section we analyse the requirements for the design of
the Streamr Network based on three example scenarios and
the goals set in the Streamr crowdfunding whitepaper [39], in
which the vision for the Streamr project was first explained.

A. EXAMPLE SCENARIOS
In order to analyze the requirements for our IoT publish-
subscribe system, we present three large-scale example sce-
narios in which the system could be used.

1) Smart City Open Data
A city or a consortium of cities publish real-time sensor
readings and public transit data, such as the positions of
the public transit vehicles, as open data. A representative
example of this kind of service is the digitransit.fi portal [40]
that provides high-frequency positioning data of Helsinki
region public transit vehicles as real-time MQTT streams.
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2) Connected Cars
The smart city is divided into geographic areas, and con-
nected cars moving inside each area publish their sensor
readings (e.g. speed, position), notifications and warnings to
an events stream covering their particular area. The cars sub-
scribe to the event stream of the area that they are currently
in, and, through that stream, receive all events from the other
cars in the area.

3) Participatory Environment Sensing
Individual persons living in the smart city publish readings
from their own sensors such as thermometers, humidity sen-
sors and air quality sensors. Based on this data a multitude
of services can be implemented, such as the weather service
envisioned in the "Social Weather Service" scenario of [2] or
the air quality monitoring service built in the HOPE project
[41].

B. REQUIREMENTS FOR THE STREAMR NETWORK
Using the the motivating scenarios outlined above and the
Streamr crowdfunding whitepaper [39] as our sources, we
extracted the following 11 main requirements for the design
of the Streamr Network.

1) Scalability
According to the goals set in the Streamr crowd-
funding whitepaper [39], the network should scale
without limit, meaning that the network continue
providing acceptable quality of service no matter
how many nodes are added to it. Also the load of
the publisher should stay constant regardless of the
number of subscribers. Keeping the publisher load
low and constant is important in all three motivat-
ing scenarios listed above. In the "Smart City Open
Data" scenario, the number of subscribers may be
high, and depends on the popularity of the apps
built on top of the data streams. In the "Connected
Cars" and "Participatory Environment Sensing"
scenarios, the uplink capacity of the connected car
or the sensor driver might prevent sending the the
events via unicast to all interested subscribers.

2) Decentralization
The the network should not have hotspots or cen-
tral points of failure. If the network is used by a
consortium of cities for distributing open data in
the "Smart City Open Data" scenario, the inde-
pendent cities should be able to keep sharing data
using the system even if some of the cities leave
the consortium or if the consortium is completely
abolished (no single points of failure in terms of
management). The cities should be able to keep
sharing data independently of technical resources
provided by the consortium, and technical prob-
lems faced by one city should not affect the service
quality of the others (no single points of failure
in terms of technology). The same arguments are

valid also in the "Connected Cars" scenario, where
the messaging system should be independent of
car manufacturers or consortia.

3) Low and predictable latency
Each subscriber should receive each event without
unnecessary delays. The event propagation delay
should stay low in all situations. In addition, the
relative delay penalty should be small if compared
to having direct unicast connections to the pub-
lishers. The "Connected Cars" scenario highlights
the importance of this requirement, because sensor
readings, and especially warnings from the cars,
need to arrive with a predictable delay to be useful.

4) Optimization for small payloads (telemetry, IoT)
The network should be optimized for transmitting
large numbers of small messages, in contrast to
transmitting small numbers of large messages. To
provide an example, the data from the digitransit.fi
open data portal mentioned in the "Smart City
Open Data" scenario gives a reference on the size
and frequency of the event data in an IoT publish-
subscribe system. We observed the vehicle posi-
tion stream of digitransit.fi 2 over a period of 24
hours and measured an average message frequency
of 653 messages per second and an average mes-
sage size of 308 bytes.

5) Bandwidth efficiency
The number of unnecessary messages transmitted
in the network should be low. A node should
only receive a small number of duplicates of each
message, as a high number of duplicates of each
event would be inefficient use of the bandwidth
of participants in the network. In the "Smart City
Open Data" the data subscribers are often mobile
web pages and mobile apps such as journey plan-
ners. In this case the transmission of unnecessary
data also drains the battery of the subscribers.

6) Message completeness
A node should receive all the messages of a stream
it is subscribed to with a high probability. The node
should be able to detect if it has missed a message,
and should be able to fetch the missing message
in that instance. This requirement is important
in the "Smart City Open Data" scenario, where
missing an event might lead to missing a bus for
a journey planner user, and it is also important for
the "Connected Cars" scenario, where missing a
warning from another car could, in the worst case,
lead to a traffic accident.

7) Churn tolerance
The network should continue offering a good qual-
ity of service even if nodes join and leave the
network at a rapid pace. In the "Connected Cars"

2mqtt.hsl.fi topic "/hfp/v2/journey/ongoing/"
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scenario, the cars are constantly moving around
the city from one area to another and connecting
to/disconnecting from the streams specific to each
area.

8) Zero noise
The nodes should only receive messages from the
streams they have subscribed to. The nodes should
not need to do any relaying of messages they are
not interested in. This requirement is especially
important in the "Participatory Environment Sens-
ing" scenario where the individual persons are
free to publish their sensor data. It is a beneficial
security feature, in the event that a malicious user
launches a DDoS attack at the service, or some-
body accidentally floods the service by connecting
a sensor with a faulty driver the network.

9) Fairness
The network should discourage selfish behavior
such as trying to achieve a smaller message la-
tency than the other users. This requirement is not
apparent in the three motivating scenarios listed
above, but becomes relevant when, for example,
transmitting stock market data because receiving
data at a lower latency than others might result in
monetary gains.

10) Attack resilience
The network should be resilient to all known at-
tacks.

11) Simplicity
The network should be reliable in real-life use. The
implementation should be kept simple and easy to
debug.

C. REQUIREMENT ANALYSIS
The requirements listed in the previous section set the bound-
aries for the design of the Streamr Network. In this section,
the requirements are analyzed in order to map the design
space in which choices can be made for fulfilling each
individual requirement.

The two first requirements "(1) Scalability" and "(2) De-
centralization" restrict the design space to peer-to-peer net-
works because client-server designs cannot fulfil either of
these requirements. The following nine requirements limit
some of the design choices that can be made when imple-
menting the peer-to-peer network.

The requirement "(3) Low and predictable latency" can be
addressed with the design of the network topology of the
peer-to-peer network. And controlling the topology can be
achieved either in a decentralized fashion, as in structured
peer-to-peer networks, or in a centralized fashion, as in
BitTorrent.

One should also be able to measure and/or estimate the
average latency in the network, in order to keep the latencies
predictable. Choosing a topology with well-known properties

in the academic literature helps in predicting the latency of
the network.

The requirements "(4) Optimization for small payloads",
"(5) Bandwidth efficiency" and "(6) Message completeness"
and "(7) Churn tolerance" go hand-in-hand. "Optimization
for small payloads" has the implication that the number of
control messages exchanged in the network should be kept
low, because there is no significant difference between the
size of the control and data messages (both are typically
under one MTU). Transmitting a control message increases
the bandwidth requirement of the network as much as trans-
mitting a data message, therefore, the number of control
messages in the network should be kept as low as possible.
This rules out using BitTorrent-like pull-based protocols [42]
where nodes first get informed of the availability of new
data with the help of a control messages, and only thereafter
request the data that they need. The requirement also favors
mesh-like topologies over tree-like topologies, such as that
of the Plumtree protocol [43], where transmission of control
messages is required in order to maintain the tree. In push-
based mesh-like systems that use flooding or gossiping for
data delivery, it is unavoidable that the nodes will receive
duplicates of each data message [10]. However, keeping the
number of duplicates low is possible by keeping the node
degree (or fanout of each node) low. On the upside, some
degree of message duplication makes it easier to achieve
message completeness because receiving the same message
from multiple peers increases the probability that a node will
receive all the data messages in a stream. Message duplica-
tion also increases the churn tolerance of the network because
each node receives the stream of messages from a number of
other nodes simultaneously, and the leaving or crashing of
a single node does not cause an interruption in the stream
of messages. Duplication also guards against censorship; if
a particular node in a topology does not propagate certain
messages to other nodes, the messages will still get delivered
by other, honest-behaving nodes.

The requirement "(8) Zero noise" implies that there cannot
be any relays in the network. This requirement rules out most
designs based on structured peer-to-peer networks such as
those of Bayeux [16] and Scribe [6]. The requirement "(10)
Attack resilience" rules out many of the designs based on
peer sampling proposed in the academic literature because
they are known to be very vulnerable to eclipse and hub
attacks [20]. Some attempts to fix this issue such as Brahms
[30] are complex and not proven in practice, and thus are
in conflict with requirement "(11) Simplicity". The problem
arises in peer sampling because the nodes are free to connect
to a large number of other nodes in a short time, and it is
possible for an attacker to trick the nodes into connecting
to fellow attackers. One way of making this attack more
difficult is to prevent the nodes from freely choosing their
own neighbors. If the neighbors of each node are decided
by trusted entities such as centralized trackers, this also
mitigates the problem of selfish nodes trying to optimize their
place in the topology, which in turn supports the requirement
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"(9) Fairness".

IV. DESIGN
The Streamr Network is a decentralized, topic-based publish-
subscribe system. Each publish-subscribe topic, referred to
as a stream in the Streamr Network, has its own peer-to-
peer overlay network that is built and maintained by a set
of BitTorrent-like trackers. The Streamr Network operates
alongside the Ethereum blockchain, which is used to main-
tain public and secure registries of streams, trackers, and
permissions. The owners of each stream can decide which
trackers are to be used for their stream; they can use a
set of default trackers maintained in a community-curated
Ethereum smart contract, or assign custom trackers by regis-
tering the tracker addresses into the stream’s smart contract.
The trackers can either be operated by the stream owners
or a third party trusted by the stream owners. When a node
wishes to publish or subscribe to a stream, it first looks up a
tracker to contact from the smart contract, and then joins the
topology of the stream according to the instructions given by
the tracker.

A high-level overview of the Streamr Network is presented
in Figure 1. In the figure, a stream owner has registered a
set of trackers for his/her stream. A user, "Bob" is interested
in the stream and instructs his Streamr node to join the
stream. Bob’s node first consults the smart contract for a
list of trackers, and connects to one of them to find other
nodes already in the stream’s overlay. According to the
instructions given by the tracker, Bob’s node joins the stream
by connecting to a number of other nodes in the stream’s
overlay. From this point on, Bob’s node will receive all the
events published in the stream from these neighbor nodes.
Bob’s node may also publish its own messages on the stream
through these neighbors if the stream owner has given Bob
publish permission on the stream.

FIGURE 1. High-level overview of the Streamr Network

Tracker mirroring can be used in order to prevent the
tracker from becoming a single point of failure for a partic-
ular stream in terms of technology, and the independence of

streams from each other, as well as the free choice trackers
for one’s own streams, avoids single points of failure in terms
of management.

The tracker controls the stream’s topology by instructing
the nodes to connect to and disconnect from other nodes, and
by instructing the nodes who to accept incoming connections
from. Eclipse attacks are difficult to stage because the nodes
are not allowed to choose their own neighbors. Because the
tracker has control over the connections the nodes can make,
it can organize the nodes into different kinds of topologies,
and by asking the nodes to ping their neighbors, it can build a
map of the stream’s topology as a weighted graph. Using this
network graph, the tracker can calculate an estimate of the
event propagation delay in the current topology by applying
Dijkstra’s algorithm. This makes it possible to optimize the
delay and message redundancy in the network, and to predict
the message delivery latency.

A. OVERLAY STRUCTURE
The Streamr Network uses per-topic random regular graphs
[44] of a low node degree as its default network topology.
In such a topology, each node maintains 4 bidirectional
Websocket or WebRTC connections to other nodes per topic.
Every publish-subscribe topic forms its own separate overlay
network, but node-to-node connections are shared between
the overlays, and at any point in time there can be a maximum
of one open connection between any pair of two nodes.
This structure of per-topic overlays with collapsing duplicate
links was shown by Chockler et. al. [7] to be able keep the
number of connections per node reasonably low in practical
situations, while only delivering events to interested nodes.

In the current Streamr Network, events are propagated
in the per-topic overlays with simple flooding to all the
neighbors of each node, with the exception of the neighbor
the event was received from. Gossiping the event to only
a random subset of the neighbors is not used, because this
would make the event propagation probabilistic and contra-
dict with the requirements "(6) Message completeness" and
"(3) Low and predictable latency" defined in the previous
Section. Because the node degree of the network is low,
we find the benefits of switching from flooding to gossiping
to be minimal when compared to the negative impact of
adding a deliberately probabilistic component to the message
delivery. We acknowledge that there is a fundamental trade-
off between bandwidth efficiency on one hand, and simplic-
ity, message completeness, and churn tolerance in the other.
In the current design of the Streamr Network we chose to
prioritize the latter three design goals at the cost of bandwidth
efficiency, and chose flooding in a random regular graph as
the event dissemination strategy.

B. OVERLAY MAINTENANCE
The role of the tracker in the Streamr Network is much more
active than the role of the Tracker in BitTorrent [45] and
the role of the Matrix directory server [17]. In Matrix, the
directory server returns to the requesting node the addresses
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of all the other nodes having the desired channel, and the re-
questing node connects to them all. In BitTorrent, the tracker,
by default, also serves the role of a peer directory from which
nodes can find a random subset of the addresses of their
peers, and the nodes choose their actual data-exchange part-
ners from this subset by applying a peer selection strategy. In
the Streamr Network, it is the tracker that executes the peer
selection strategy, and sends explicit instructions to nodes
to open and close connections to their peers. The default
tracker algorithm of the Streamr Network aims at keeping
the topology of each per-topic overlay as close as possible
to a random regular graph with a low node degree and a
low network diameter. The tracker algorithm is inspired by
the Steger and Wormald [46] algorithm, shown below, for
generating a random regular graph of n nodes with node
degree d:

1) Start with nd points 1, 2, . . . , nd (nd even) in n groups.
Put U = 1, 2, . . . , nd. (U denotes the set of unpaired
points.)

2) Repeat the following until no suitable pair can be
found. Choose two random points i and j in U, and,
if they are suitable, pair i with j and delete i and j from
U.

3) Create a graph G with edge from vertex r to vertex s if
and only if there is a pair containing points in the rth
and sth groups. If G is d-regular, output it, otherwise
return to step (1).

In the Steger and Wormald algorithm the points i and j
are considered suitable if i and j do not belong to the same
group and there is no existing pairing between the groups
that i and j belong to. If we interpret this algorithm in terms
of peer-to-peer networks, the groups correspond to the nodes
in the network, each node having d connection slots. In this
interpretation, the suitability condition means that no node
is allowed to connect to itself and there can be at most one
connection between any given pair of nodes. However, The
Steger and Wormald algorithm is aimed at constructing a
random d-regular graph out of a static group of n nodes and
does not address the actual situation in peer-to-peer networks
where n is constantly changing as nodes join and leave the
network. Taking this dynamism into account, we designed
the following tracker algorithm that is executed by the tracker
every time a node joins or leaves the network:

1) Let V denote the set of nodes with unused connection
slots in the system at the time the algorithm is executed.

2) Repeat the following until no suitable pair can be
found: choose two random nodes a and b in V , and
if they are suitable, connect a with b and delete a and b
from V if they do not have unused slots anymore.

3) Delete all nodes from V that have less than 2 unused
slots.

4) Repeat the following until there are no nodes left in V:
for node v 2 V pick uniformly at random from the

network nodes c and d that are connected to each other
and are suitable for connecting to v, and disconnect c
from d. Now connect v to both c and d, and delete v
from V if v has less than 2 unused slots left.

In addition to the Steger and Wormald algorithm, the
Streamr tracker algorithm resembles the distributed algo-
rithms used for network maintenance of d-regular random
graphs in the SWAN system [47]. The SWAN algorithm
consists of three distinct strategies that are executed when a
node joins the network, a node disconnects from the network
gracefully, and when a node disconnects from the network
ungracefully without a warning:

1) When a new node joins the network, it initiates d/2
random walks to choose d/2 disjoint connections in the
network at random. The new node interposes itself on
each chosen connection, placing itself in between the
two nodes the chosen connection originally connected.

2) When a node disconnects the network gracefully, it
instructs its d neighbors to connect to each other di-
rectly (d is always assumed to be even). Effectively the
node de-interposes itself from between its neighbors,
making this strategy the exact reverse of the strategy
1).

3) When a node disconnects from the network disgrace-
fully without a warning, its neighbors will notice this
and broadcast a request for new connections through
the network. With the help of these connection re-
quests, the nodes with less than d connections can pair
up and make the network complete.

We can notice that strategy 1) of SWAN corresponds to
stage 4) of the Streamr tracker algorithm where both choose
disjoint connections in the network at random, and interpose
the node with less than d connections between the two nodes
originally connected together. Strategy 3) of SWAN, in turn,
corresponds to stage 2) of the Streamr tracker algorithm,
where nodes with less than d connections are paired together.
Even though there is no equivalent to SWAN’s strategy 2) in
the Streamr tracker algorithm, we argue that this is insignif-
icant to the practical properties of the resulting network and
that the theoretical results on SWAN-like networks found in
the literature [48] can also be applied to the Streamr Network.

C. NETWORK PERFORMANCE ESTIMATION
One of the requirements for the design of the Streamr Net-
work listed in Section III was the predictability of latency. We
addressed this requirement by introducing the capability of
conducting near-real-time network performance estimation
to the tracker. At all times, the Streamr tracker keeps an up-
to-date graph of each per-stream topology it controls. This
graph contains information about the one-way delays of the
connections in the topology, and the delay values are kept up-
to-date via status reports periodically sent by each node to the
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tracker. The reports include the round-trip-delays the node
constantly measures to its d neighbors. Using this graph, the
tracker can calculate an estimate of the end-to-end multi-
hop delays in the topology at any point in time, using the
standard Dijkstra’s algorithm. Any application interested in
the delay estimates for any particular stream can request this
data from the tracker of the stream, to gain knowledge of
metrics such as estimated minimum, maximum and mean
message propagation delays in the stream.

V. THEORETICAL ANALYSIS AND EXPERIMENTAL
EVALUATION
We evaluate the design of the Streamr Network using theoret-
ical analysis, simulations and live experiments. Simulations
are used to show that the Streamr tracker algorithm produces
topologies that are similar to random d-regular graphs. The-
oretical analysis is then used to demonstrate what kind of
trade-offs happen due to the fact that Streamr topologies are
similar to random d-regular graphs, and all the implications
that might have. Finally, the results of live experiments,
conducted by placing up to 2048 Streamr nodes in Amazon
data centers around the world, are presented to demonstrate
the real-life performance and scalability characteristics of the
Streamr Network and to show the accuracy of the network
performance estimation method introduced in section IV-C.

A. METRICS AND DEFINITIONS

We use the following metrics and definitions when evaluating
the performance of the Streamr Network:

Node degree is the number of connections each node has
in a stream’s topology.

Network diameter (expressed and evaluated as number of
hops) is the longest of the shortest paths between the pairs of
nodes in the topology.

Shortest path delay expressed in milliseconds is the lowest
one-way delay between a pair of nodes in the topology.

Round-trip time (RTT) expressed in milliseconds is the the
underlay round-trip time between two nodes in the topology.

Relative delay penalty (RDP) is the ratio between the one-
way delay between two nodes in the overlay network and
the one-way unicast delay between the same two nodes in
the underlay network (half of the RTT). When evaluating
the performance of network topologies, we use the metric
average relative delay penalty, defined as the ratio between
the average node-to-node delay in the overlay network and
the average node-to-node unicast delay in the underlay net-
work. As pointed out by [49], using average delays in the
calculation instead of node-to-node delays helps to avoid the
problems caused by node-pairs with small delays seen in
[50].

Flooding time (expressed in milliseconds) is the time it
takes before all the nodes in the network have received a
published message. In an ideal implementation, the flooding
time equals the maximum fastest path delay of the network.

Message redundancy (expressed as a count of messages) is
the average number of times each node receives each unique
message.

B. THEORETICAL ANALYSIS AND SIMULATION

In this section we demonstrate that Streamr Network topolo-
gies resemble random d-regular graphs, and we analytically
explore the practical implications of this.

1) Randomness and d-regularity of the Streamr topologies

The d-regularity of Streamr Network topologies depends on
the tracker algorithm presented in section IV-B. If properly
implemented, the tracker algorithm should only generate
network topologies where the node degree is at most d for
all nodes. Further, with the exception of topologies where the
number of nodes is less than or equal to d, the node degree
should be exactly d for all even values of d.

The randomness of the generated Streamr Network topolo-
gies is difficult to prove formally. Thus we resorted to sim-
ulating the tracker algorithm and comparing the properties
of the resulting topologies with those of a random d-regular
graph of the same size and node degree. In the Streamr
Network, there can be at most one connection between each
pair of nodes, and nodes are not allowed to connect to
themselves. With these assumptions, in a network of n nodes
it is possible to establish a maximum of n2

2 �
n
2 = n2�n

2
distinct connections between the nodes. In every d-regular
network of n nodes with node degree d, where d is even and
n > d, there are n � d

2 connections. Thus the probability
of a connection existing between nodes vi and vj where
i; j 2 [0:::n], i 6= j is

P (vi is connected to vj) =
n� d

2
n2−n

2

= d
n�1 : (1)

For example, in a random d-regular network with 1000 nodes
and node degree 4 we get the probability for connection
existing between any given pair of nodes in the network to
be 4

1000�1 = 4
999 � 0:0040040.

In order to study the randomness of the topologies gener-
ated by the Streamr tracker, we extracted the tracker algo-
rithm from the Streamr Network codebase into a separate
module, and simulated the construction of a topology of
n = 1000 nodes and node degree d = 4. The nodes were
given distinct identifiers in the range of [0:::999] and they
joined the topology in order based on their identifier. We
repeated this simulation 1000 times, and finally calculated
how many times there was a connection between each distinct
pair of nodes in the 1000 topologies. The results are shown
in the connectivity counts matrix in Figure 2. Each pixel in
the graph represents a connection from node vi to vj in the
1000 generated topologies. The darker the pixel is, the more
times the connection existed in the topologies. Note that the
matrix is mirrored along the diagonal as the connections are
two-way.
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FIGURE 2. The pairwise counts of neighbor assignments for 1000 nodes with
node degree 4 over 1000 rounds. Each row and column corresponds to a
node, and both are ordered according to join order of nodes. A pixel at (i; j) is
darkened according to how many times nodes vi and vj were made
neighbors. The matrix is symmetric, and the diagonal is white ((i; i) = 0)
because a node cannot be assigned to be its own neighbor.

We can observe that the connectivity counts matrix pre-
sented in Figure 2 resembles white noise, which can be seen
as an indication of randomness. To analyze the randomness
further, we calculated the average probability of a distinct
pair of nodes being connected in the topologies by dividing
the counts by the number of repetitions. The calculated
average probability for a pair of nodes being connected in
the simulations was 0.0040040, which matches the probabil-
ity of 0.0040040 calculated using Equation 1 for a perfect
random d-regular graph. The distribution histogram of the
probabilities of a distinct pair of nodes being connected in
the simulation data is shown in Figure 3.
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FIGURE 3. Histogram of the probabilities of a distinct pair of nodes being
connected in the simulation data

We can observe from the figure that the probabilities of
a distinct pair of nodes being connected in the simulation
data are distributed around the mean as would be expected
of a random variable 3. We can thus safely conclude that the
topologies generated by the Streamr tracker algorithm closely
resemble a random d-regular graph, even though we leave the
exact proof of this for future work.

2) Analysis of practical design trade-offs
Having shown in the previous subsection that the Streamr
Network topologies resemble random d-regular graphs, we
can now analyze the practical design trade-offs of the net-
work based on what is known about random d-regular graphs
in the literature.

One of the most used metrics in the literature for evaluating
network topologies is the network diameter. It is defined
as the maximum hops on the shortest path between any
pair of nodes in the network [44]. According to analytical
results [44], the network diameter diam(G) for a random
regular graph G with n nodes of node degree d satisfies
(asymptotically almost surely) the condition

1 + [logd�1 n] +

�
logd�1

�
(d� 2)

6d
log n

��
�

diam(G) � 1 + [logd�1((2 + �) d n log n)] :

(2)

Figure 4 displays the upper bound of the network diameter
defined in (2) as function of number of nodes n in the network
with various node degrees d.
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FIGURE 4. The upper bound of network diameter according to Equation 2

It can be observed in Figure 4 that the upper bound of the
network diameter increases logarithmically as the number of
nodes increases. Another key observation from the figure is
that the upper bound of the network diameter decreases as the
node degree d increases. In order to make this phenomenon
more visible, in Figure 5 we plotted the upper bound of the

3A subtle long tail can be observed, which could indicate that nodes
arriving first have a very slightly higher probability of being connected to
each other
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network diameter at various node degrees while keeping the
number of nodes constant n = 100000.
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FIGURE 5. The upper bound of network diameter at various node degrees
according to Equation 2

The upper bound of the network diameter decreases at
a decreasing rate, as the node dimension d approaches its
maximum value, d = n� 1, of a fully-connected network.

Message redundancy is a useful metric in evaluating how
the Streamr Network meets its requirement "(5) Bandwidth
efficiency". Message redundancy in flooding in random
graphs was analyzed in [10], and the upper limit for the
number of unavoidable duplicate messages in flooding a
message was given as

N

�
d

2
� 1

�
+ 1 (3)

where N is the number of nodes in the network, and d
is the average node degree. However, the problem of this
formula is that it assumes a handshake is made prior to
sending each message to ensure that each link is used exactly
once. Such a handshaking protocol is not feasible in a system
such as the Streamr Network that aims at low latency and
is optimized for small payloads, as the handshakes would at
increase the delay with at least one RTT, and the handshaking
messages would not be considerably smaller than the actual
message payloads. We thus need to derive a more realistic
formula for the number of duplicates in the Streamr Network.

When a message is flooded in a Streamr Network topology
on Nnodes, the publishing node first sends it to its d neigh-
bors. As each of the N � 1 non-publisher nodes receives a
message for the first time, it forwards the message to d � 1
of its neighbors (all neighbors except the one it received the
message from) in a quick, atomic operation that cannot be
interrupted.

Thus the total number of messages sent during the flooding
of a single message in the Streamr Network is (N � 1)(d �
1)+d. In an optimal case with no duplicatesN�1 messages

would get sent, and thus (N�1)(d�1)+d�(N�1) = N(d�
2) + 2 of the sent messages are duplicates. In conclusion,
we can express the average number of duplicates sent in the
flooding of a single valid message in the Streamr Network
per node as

N(d� 2) + 2

N
= d� 2 +

2

N
� d� 2: (4)

The number of duplicates received per each valid message
by each non-publisher 4 node as function of node degree is
plotted in Figure 6.
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FIGURE 6. Number of duplicate messages received by the non-publisher
nodes per each valid message as function of node degree

For example, if 4 messages per second are published in
a Streamr Network topology with node degree d = 6, each
node in the network will receive 4 + (6 � 2) = 8 messages
per second.

The number of duplicates per valid message received
translates directly into downlink bandwidth demand of the
non-publisher nodes. If node degree of 4 is used, the down-
link bandwidth demand of the nodes will be 3 times the
stream bandwidth, with node degree 6, the bandwidth de-
mand will be 5 times the stream bandwidth and so on. The
node downlink bandwidth demand factor as function of the
node degree can be formally expressed based on Equation 4
as

1 + (d� 2) = d� 1: (5)

.
The uplink bandwidth demand of factor of the the non-

publisher nodes is also d � 1, as each non-publisher node
forwards each message to d� 1 neighbors. For the publisher
node, the uplink bandwidth demand factor is exactly d,
because it sends each message to all of its d neighbors.

4the publisher node receives no messages
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As is evident from Figures 5 and 6 the node degree is
a configuration parameter that allows one to trade smaller
network diameter (lower latency) for greater redundancy
(higher bandwidth consumption). Choosing the right node
degree for each per-topic overlay thus becomes an important
design decision, where a balance between, on the one hand,
the requirement "(5) Bandwidth efficiency" and on the other
hand, the requirements "(3) Low and predictable latency",
"(7) Churn tolerance" and "(10) Attack resilience" needs to
be found. With higher node degrees yielding diminishing
returns in network diameter, for the Streamr Network, we
chose the node degree 4 as the best default value for most use
cases, although stream owners could customize this setting
on a per-stream basis to achieve their preferred trade-off.

It should also be noted that the network diameter, mea-
sured in hops, is not the same as delay measured in time. In
the real world, the one-hop delays may differ significantly, as
a connected pair of nodes might be in the same data center
and have a low unicast delay between them, while another
pair of connected nodes could be on opposite sides of the
world. For practical applications, only the delay measured in
milliseconds is relevant, not the number of hops required for
the data to reach its destinations. For this reason, in case of a
publish-subscribe network intended to operate globally, it is
useful to measure delays in geographically distributed real-
world setups with heterogeneous delays between nodes. In
the next section, we will explore such an experiment.

C. AMAZON EXPERIMENTS
In order to measure the real-life performance of the Streamr
Network, we conducted a series of experiments on Streamr
Network nodes deployed to 16 Amazon Web Services (AWS)
regions around the world. Our goal was to study the scalabil-
ity of the Streamr Network by observing how the key metrics,
message propagation delay and relative delay penalty evolve
as the number of nodes in the network increases. Addi-
tionally, we aimed to evaluate the accuracy of our network
performance estimation method presented in Section IV-C.

1) Experimental setup
The experiments were conducted using a variable number
of Streamr Network nodes deployed at 16 distinct Amazon
AWS regions listed in Table 1, and one Streamr tracker,
configured to construct topologies of node degree 4, was de-
ployed at the eu-west-1 AWS region (Ireland). As the number
of nodes was varied in the experiments, every participating
AWS region always had an equal number of nodes. Each
Streamr node was run in its own virtual machine of type
"t3.small" in an EC2 auto scaling group (ASG) that was
used for starting the right number of virtual machines for
each experiment run. Systemd was used inside each virtual
machine to automatically start and stop the Streamr node
whenever the virtual machine started or stopped. A simple
HTTP endpoint was added to the Streamr nodes to allow
for remote control during the experiments. The endpoint was
used to instruct the nodes to subscribe and unsubscribe to

streams, to publish events to streams, to measure round-
trip delays, to restart the nodes and to allow fetching of the
experiment logs for analysis. The tracker was fitted with a
similar HTTP endpoint to allow restarts and fetching of the
state of the overlay network topology.

Prior to starting the experiments, we measured using the
ping command the average underlay round-trip times (RTTs)
between a total of 1024 virtual machines, with 64 virtual
machines placed in each of the 16 Amazon AWS regions.
Each virtual machine pinged the 1023 other virtual machines
five times. Assuming symmetrical links, we calculated the
average one-way delay between the regions by dividing the
RTTs by two. The results of this measurement are listed in
Table 1.

From Table 1 we can observe that the one-way delays
between two nodes in the same region were between 0.07 and
0.15 milliseconds, with a mean of 0.12 and a median of 0.095
ms. In the actual experiments, the measurement precision for
one-way delays was limited to 1 ms, meaning that node-to-
node delays within a single region would appear as zeros in
the measurement results if no corrections were made. For this
reason we used 0.1 ms as an approximation for all one-way
delays between two nodes in the same region in the actual
experiments.

2) Conducting the experiments

In the Amazon experiments we aimed to determine the
overlay node-to-node message propagation delays between
all pairs of nodes in each experiment.

To this end, we started the targeted number of virtual
machines on the AWS regions, and once the nodes running
inside the virtual machines had started, we instructed them
over the node’s HTTP endpoints to subscribe to the default
stream of the experiment. The nodes joined the stream with
the help of the tracker, and after all the nodes had joined the
stream, we instructed each node to publish 2 messages to the
stream with a 3-second interval between the messages. The
publishing instructions were sent to the HTTP endpoints of
the nodes in series, which resulted in an average rate of 13.6
messages being published in the network per second. The
publishing rate was kept this low in order to prevent network
bandwidth or the processing capacity limits of the nodes from
affecting the latency measurements 5.

The clocks of the virtual machines were kept in sync using
NTP. The publisher and the subscribers appended their node
ID and a timestamp to all the messages they encountered in
the experiments. The nodes logged every message that they
received, and the message propagation delay of each message
could be easily calculated with the help of the timestamps at-
tached to the messages. Because there is message duplication
by design in the network, only the copy of each message that
was first to arrive was taken into account when calculating

5The maximum throughput of a node is mainly determined by the avail-
able hardware and network connectivity.
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the message propagation delays. Additionally, we logged the
number of duplicates received for each message.

The experiment was run with network sizes of 32, 64,
128, 256, 512, 1024 and 2048 nodes, which was realized by
running 2, 4, 8, 16, 32, 64 and 128 virtual machines (VMs)
per AWS region. For each network size, the experiment was
repeated 10 times using the same VMs, only restarting the
nodes and the tracker using the HTTP endpoints in between.
We noticed from the VM logs that in the first repetition
of the experiment for each network size, Amazon’s CPU
throttling had kicked in, introducing artifacts to the mea-
surement results. CPU throttling was not detected during the
following 9 repetitions, and thus we discarded the first rep-
etition as warm-up and collected artifact-free measurement
results from the other 9 repetitions of the experiment for
each network size. The nodes joined the stream anew for
each repetition, and thus the tracker generated 63 network
topologies in total during the 9 measured repetitions for all
7 different network sizes. At the end of each experiment
repetition, the network topology graph was downloaded from
the tracker, and the message arrival metrics were downloaded
from the nodes, both saved for further analysis.

3) Message propagation delay

As described above, the clocks of the nodes were kept in sync
using NTP. Each published message was timestamped by the
publishing node, and the receiving nodes logged the arrival
time of the first copy of each message. Based on the logs we
calculated the message propagation delay for each message
sent in the experiments.

Figure 7 shows the CDF of the message propagation delays
in the experiments with 32, 64, 128, 256, 512, 1024 and 2048
nodes, respectively. The experiment was repeated 9 times for
each network size with the tracker generating a new topology
for each repetition.
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FIGURE 7. Message propagation delays in the Amazon experiments

We can observe from figure 7 that the message delivery
delay increases as a function of network size as expected,
and that even in the case of the 2048 nodes network, 99% of
messages were delivered globally within 362 ms.

In order to examine the scalability of the network more
closely, we further plotted in Figure 8 the mean message
propagation delay as a function of the number of nodes in
each experiment. As the experiment was repeated 9 times
for each network size with a freshly-generated topology for
each repetition, we also show as a shadowed area around the
mean the minimum and maximum of the average delays of
the different repetitions.

0 250 500 750 1000 1250 1500 1750 2000
Number of nodes

140

160

180

200

M
es

sa
ge

 p
ro

pa
ga

tio
n 

de
la

y 
(m

s)

Mean message propagation delay in Amazon Experiments

FIGURE 8. Average message propagation delays in the Amazon experiments

We can observe from Figure 8 that the mean message
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TABLE 1. Mean one-way delays between nodes in different regions (ms)

eu-
central-
1

eu-
west-1

eu-
west-2

eu-
west-3

eu-
north-1

us-east-
1

us-east-
2

us-west-
1

us-west-
2

ca-
central-
1

ap-
south-1

ap-
northeast-
2

ap-
southeast-
1

ap-
southeast-
2

ap-
northeast-
1

sa-east-
1

eu-central-1 0.08 12.59 7.54 4.47 10.88 42.93 48.35 72.00 82.26 49.97 54.22 132.85 83.90 140.63 126.86 102.74
eu-west-1 11.49 0.13 5.94 9.08 18.69 35.46 47.66 69.64 67.02 39.05 61.15 122.02 90.11 126.88 111.99 92.27
eu-west-2 6.56 4.86 0.07 3.82 12.67 37.95 42.73 67.90 65.70 44.02 54.30 124.00 89.26 136.15 104.59 97.34
eu-west-3 4.50 8.91 3.59 0.07 14.38 39.18 44.51 68.60 78.24 46.07 52.27 135.19 83.26 136.62 122.24 99.28
eu-north-1 10.42 17.43 12.42 14.02 0.07 51.10 57.97 82.06 84.86 56.20 65.91 142.86 98.90 147.24 131.77 109.89
us-east-1 42.92 35.15 37.90 39.27 52.29 0.46 5.67 29.99 37.46 7.60 90.78 92.47 119.30 98.54 80.27 60.37
us-east-2 48.19 47.71 43.52 44.66 58.11 5.71 0.13 25.32 34.53 12.81 95.13 92.30 112.00 93.70 79.11 65.69
us-west-1 72.37 72.21 67.68 68.72 82.09 30.16 25.80 0.10 10.78 38.51 115.94 68.02 89.35 68.28 55.97 95.03
us-west-2 78.10 61.46 69.01 76.24 83.93 39.99 35.05 10.21 0.14 33.44 114.57 61.17 86.59 68.72 49.72 90.04
ca-central-1 49.75 39.07 44.00 46.92 56.49 7.05 12.81 38.63 32.87 0.08 97.24 91.35 112.87 97.98 77.61 62.62
ap-south-1 54.27 59.42 56.24 53.26 64.63 91.46 95.20 120.20 109.85 97.84 0.11 77.85 26.03 69.67 65.77 151.04
ap-northeast-2 134.19 119.23 123.99 135.35 142.88 93.07 92.08 67.09 61.21 91.61 79.62 0.11 51.44 73.50 16.75 148.06
ap-southeast-1 88.68 88.85 84.70 83.30 97.66 114.67 114.57 87.74 81.18 112.62 30.73 51.43 0.09 45.08 42.18 169.35
ap-southeast-2 141.22 128.98 136.56 137.16 147.65 98.11 93.66 68.06 68.97 97.82 69.60 73.50 45.09 0.08 52.74 154.67
ap-northeast-1 125.07 105.30 104.35 122.96 128.86 80.23 79.29 55.95 51.05 78.04 68.14 16.26 39.98 52.71 0.08 134.58
sa-east-1 103.01 91.93 96.37 99.29 109.92 58.02 64.88 94.69 89.59 62.63 151.45 148.29 172.10 154.62 134.45 0.15

propagation delay increases sub-logarithmically as the num-
ber of nodes in the network increases, and we can thus
conclude that the scalability of the Streamr Network meets
the requirements set in section III also in a real-life setting.
The data presented Figure 8 is shown in numerical form in
Table 2.

TABLE 2. Average message propagation delays in the Amazon experiments

Number
of
nodes

Min of
average
delays
(ms)

Avg of
average
delays
(ms)

Max of
average
delays
(ms)

Min-
Max
difference
(ms)

Differ-
ence
%

32 127 146 160 33 26.0
64 147 157 172 25 17.1
128 151 172 186 35 22.9
256 160 177 197 37 23.1
512 170 189 211 40 23.7
1024 175 190 210 35 19.8
2048 184 194 202 18 9.8

The minimumum, maximum, and average delays for each
number of nodes listed in Table 2 show the variation in per-
formance between the topologies of the different experiment
repetitions. The difference in measured average delays is at
its highest when the number of nodes is low, and gets smaller
as the number of nodes increases. The variation also gives us
a rough indication of the optimization potential in the space
of regular graphs, potentially available by utilizing a better-
than-random topology construction heuristic 6. The largest
observed difference between the fastest and slowest topology
for any network size was 26%, providing a ballpark figure
of how much the worst-case delays could be improved by
finding an optimal topology.

4) Relative delay penalty
To make the experimental results on the performance of the
Streamr Network comparable to the performance of other
similar networks known from the academic literature, we
calculated the average relative delay penalty (RDP) from
our Amazon experiments. We use the definition of average
relative delay penalty given in Section V-A where the RDP

6Examples of such approaches could be leveraging location or latency
information in the topology construction.

of the network is calculated by dividing the average one-
way delay between the nodes in the overlay network by the
average one-way delay between the nodes in the underlay
network. In our calculation we used the one-way delays
listed in Table 1 as the underlay delays, and the message
propagation delays logged by the nodes, as explained in
Section , as the overlay delays. The RDP results are plotted
in Figure 9. The solid line marks the average RDP of the 9
experiment repetitions. The shaded area around the average
line displays the minimum and and maximum average RDP
of the repetitions.
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FIGURE 9. Average relative delay penalty in the Amazon experiments.
Minimum and maximum average delay penalties of 9 experiment repetitions
displayed as shadowed area.

We can observe from the figure that the average RDP stays
under 3 in most of the repetitions, and that the difference in
average RDP between the fastest and slowest topology gets
smaller as the number of nodes in the network increases.

To interpret the RDP result from a practical point of view,
broadcasting messages over the Streamr Network to thou-
sands of recipients has a latency of up to 3 times the latency
of a direct connection. On the other hand, over the Streamr
Network a publishing node can deliver messages to any
number of recipients by only ever sending out 4 copies of the
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message. As discussed earlier in this paper, a large number
of direct connections is hardly scalable and comes with the
technical and business risks of centralized solutions, making
this latency trade-off potentially worthwhile for many practi-
cal applications seeking scalability, fault tolerance, and other
aspects of risk reduced via decentralization.

5) Number of duplicates

To validate the number of duplicates prediction presented in
Equation 4 in section V, we logged the number of duplicate
messages received by nodes for each individual message. The
average number of duplicates in each experiment repetition
was found to be in the range of 1.95 to 2.05, matching the
expected value of 2 for node degree 4.

6) Performance estimation accuracy

In order to investigate the accuracy of the network perfor-
mance estimation method presented in Section IV-C, we
applied the method for estimating the average latency to each
of the 63 network topologies in the Amazon experiment.
The network topologies were downloaded from the tracker,
and pre-measured delays listed in Table 1 were inserted as
weights into the topology graphs. Because the underlay delay
measurements were aggregated to a data center granularity,
we used the same measured inter-data center delay value for
all connections between each pair of data centers. From these
weighted topology graphs we calculated the estimated aver-
age node-to-node overlay delay in each of the 63 topologies
using Dijkstra’s algorithm. We further grouped the results
by the number of nodes in the topologies, and calculated
the average of the estimated average node-to-node delays for
each number of nodes. The results are listed in Table 3 and
plotted in Figure 10 along with the measured average node-
to-node overlay delays from the Amazon experiments.

TABLE 3. Estimation accuracy

Number of
nodes

Average of
estimated av-
erage delays
(ms)

Average of
measured av-
erage delays
(ms)

Absolute
differ-
ence
(ms)

Difference
%

32 137 146 9 6.3
64 150 157 6 4.3
128 168 172 4 2.6
256 172 177 5 2.7
512 184 189 5 2.7
1024 186 190 5 2.6
2048 189 194 6 3.0
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FIGURE 10. Estimated and measured mean message propagation delays in
the Amazon experiments.

Table 3 and Figure 10 show that the average of the esti-
mated average delays is 2.6 to 6.3% lower than its measured
counterpart for all the investigated topology sizes. This is an
expected result, because the Dijkstra’s algorithm calculates
the fastest paths between the pairs of nodes without taking
into account processing delays at the nodes. The delays
calculated using Dijkstra’s algorithm can thus be seen as a
theoretical lower bound for the delays in any given topology,
and considering this, the delays in the Streamr Network are
not far away from the lower bound.

We plotted the CDF of the absolute percent errors of the
63 estimations into Figure 11.
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FIGURE 11. Delay estimation error

The mean absolute percentage error (MAPE) calculated
from the 63 estimations was 3.5%. The error is surprisingly
low, considering that the estimations were calculated using
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inter-data center delays instead of node-to-node ones, and
that the inter-data center delays had been measured several
hours before running the actual Amazon experiments.

VI. CONCLUSION
In this paper we presented and evaluated the Streamr Net-
work, a decentralized publish-subscribe system, already in
production, that offers low and predictable message prop-
agation delays by enforcing the intended network topol-
ogy with the help of trackers. An experimental evaluation
of the Streamr Network was conducted by running up to
2048 Streamr Network nodes placed in Amazon data centers
around the world. The experimental results show that the
message propagation delays in the Streamr Network scale
logarithmically as a function of the number of nodes, and
that the delays can be estimated using Dijkstra’s algorithm
with mean absolute percentage error (MAPE) of 3.5%.
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